Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Nuclear Medicine ; : 125-134, 2018.
Article in English | WPRIM | ID: wpr-997337

ABSTRACT

PURPOSE@#The present paper reports a systematic study on the effect of bifunctional chelators (BFC) namely, NOTA, DOTA, and DTPA, on the radiochemical formulation, in vitro stability, and in vivo biological properties of ⁶⁸Ga-labeled RGD peptide derivatives.@*METHODS@#The three RGD conjugates namely, NOTA-Bn-E-[c(RGDfk)]₂, DOTA-Bn-E-[c(RGDfk)]₂, and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled with ⁶⁸Ga and the radiolabeling was optimized with respect to the ligand amount, radiolabeling time, and temperature. Further, the ⁶⁸Ga complexes were assessed for their in vitro and in vivo stabilities. The biodistribution studies of the three radiolabeled conjugates were carried out in C57BL/6 mice bearing melanoma tumor at 30 min and 1 h post-adimistration.@*RESULTS@#NOTA-Bn-E-[c(RGDfk)]₂ could be radiolabeled with ⁶⁸Ga at room temperature while DOTA-Bn-E-[c(RGDfk)]₂ and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled at high temperature. ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was found to be the most kinetically rigid in in vitro stability assay. The uptake of the three radiolabeled peptide conjugates in melanoma tumor was comparable at 1 h post-administration (NOTA; DOTA; DTPA (% I.D./g):: 2.78 ± 0.38; 3.08 ± 1.1; 3.36 ± 0.49). However, the tumor/background ratio of ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was the best amongst the three radiotracers. ⁶⁸Ga-complexes of NOTA-Bn-E-[c(RGDfk)]₂ and DOTABn-E-[c(RGDfk)]₂ showed excellent in vivo stability while ⁶⁸Ga-DTPA-Bn-E-[c(RGDfk)]₂ showed significant metabolic degradation.@*CONCLUSION@#These studies show that ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ would be the most appropriate ⁶⁸Ga-labeled radiotracer and the most amenable for kit formulation.

2.
Korean Journal of Nuclear Medicine ; : 125-134, 2018.
Article in English | WPRIM | ID: wpr-786977

ABSTRACT

PURPOSE: The present paper reports a systematic study on the effect of bifunctional chelators (BFC) namely, NOTA, DOTA, and DTPA, on the radiochemical formulation, in vitro stability, and in vivo biological properties of ⁶⁸Ga-labeled RGD peptide derivatives.METHODS: The three RGD conjugates namely, NOTA-Bn-E-[c(RGDfk)]₂, DOTA-Bn-E-[c(RGDfk)]₂, and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled with ⁶⁸Ga and the radiolabeling was optimized with respect to the ligand amount, radiolabeling time, and temperature. Further, the ⁶⁸Ga complexes were assessed for their in vitro and in vivo stabilities. The biodistribution studies of the three radiolabeled conjugates were carried out in C57BL/6 mice bearing melanoma tumor at 30 min and 1 h post-adimistration.RESULTS: NOTA-Bn-E-[c(RGDfk)]₂ could be radiolabeled with ⁶⁸Ga at room temperature while DOTA-Bn-E-[c(RGDfk)]₂ and DTPA-Bn-E-[c(RGDfk)]₂ were radiolabeled at high temperature. ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was found to be the most kinetically rigid in in vitro stability assay. The uptake of the three radiolabeled peptide conjugates in melanoma tumor was comparable at 1 h post-administration (NOTA; DOTA; DTPA (% I.D./g):: 2.78 ± 0.38; 3.08 ± 1.1; 3.36 ± 0.49). However, the tumor/background ratio of ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ was the best amongst the three radiotracers. ⁶⁸Ga-complexes of NOTA-Bn-E-[c(RGDfk)]₂ and DOTABn-E-[c(RGDfk)]₂ showed excellent in vivo stability while ⁶⁸Ga-DTPA-Bn-E-[c(RGDfk)]₂ showed significant metabolic degradation.CONCLUSION: These studies show that ⁶⁸Ga-NOTA-Bn-E-[c(RGDfk)]₂ would be the most appropriate ⁶⁸Ga-labeled radiotracer and the most amenable for kit formulation.


Subject(s)
Animals , Mice , Chelating Agents , In Vitro Techniques , Melanoma , Pentetic Acid , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL